
User Applications
This section covers the following topics:

Overview
Incore Database
Integration of User Applications into Open NSPF
Macro Facility

Overview
Natural ISPF provides a number of special programming facilities that help you realize powerful and flexible
application development at your site with a minimum of effort. The following figure lists the available facilities:

Incore Database:
Allows you to maintain complex data structures (free format texts, tables, reports, files, etc.) in user memory in
a so-called incore file. Data in an incore file can be manipulated using familiar Natural statements and/or by
integrating the Software AG Editor in Natural.
Integration of User Applications into Open NSPF:
The Open NSPF facility allows you to extensively customize your Natural ISPF environment to suit the
(changing) working needs of your installation. You can create new objects and relate functions to them, thus
making the whole Natural ISPF infrastructure available for these objects. The integration of new objects can be
made easy by the ability to modify existing menus and create new ones.
Macro Facility:
Natural ISPF facilitates rapid editing using a special macro feature: source lines of any kind can be generated
automatically, thus making much time-consuming typing in of data redundant.

1Copyright Software AG 2002

User ApplicationsUser Applications

Incore Database
The Natural ISPF Incore Database facility supports the creation of "incore files" in user memory, allowing you to
maintain complex data structures and to perform a wide range of actions on these structures. With the Incore
Database, you can use Natural to handle free format texts, reports, files and tables.

Using incore files in application development has several advantages:

You can integrate Software AG Editor functions in Natural programs, enabling flexible manipulation of your
incore files;
An incore file is a temporary workfile of unlimited space running in unshared memory;
You can have your personal environment to test and prototype your applications away from your site’s database
administration activities. After prototyping, no further source changes are required to access shared data in a
real database;
If you wish to keep the contents of an incore file permanently, you can write them to a container file. You can
retrieve the incore file later, thus avoiding the need to regenerate the data from your programs.

Defining and Maintaining Incore Files

The structure of an incore file is defined in the same way as any other Natural view. Incore files are not identified by
a file number but by an identifier, thus allowing multiple copies of a file created with the same view to be in the
database at the same time. Once an incore view has been defined, incore files can be created in any of a number of
ways:

Implicitly using a STORE statement in a Natural program
Explicitly using a CALLNAT statement with ACTION=CREATE
Dynamically by writing the output of a Natural program to an incore file with WRITE or DISPLAY

You can use standard Natural DML statements to retrieve, add, modify and delete records in an incore file.
Operations on an incore file as a whole (EDIT, BROWSE, DELETE) can be performed using the CALLNAT
statement. The CALLNAT statement is also used to realize program-controlled editing with Software AG Editor
commands for display (for example, BNDS, EXCLUDE, INCLUDE, CAPS, HEX, etc.), scroll (for example, FIND,
BOTTOM, TOP, UP, DOWN, LOCATE etc.), and text manipulation (CHANGE, DELETE, JUSTIFY, etc.).

Example

The following example program illustrates the implicit creation of an incore file using the STORE statement. A text
line is written to the file and the file is then presented to you in an edit session, allowing you to add further text lines:

Copyright Software AG 20022

User ApplicationsIncore Database

DEFINE DATA LOCAL USING IDBI---L
LOCAL
1 TEXT VIEW OF ISP-IDB-TEXT
 2 LINE
END-DEFINE
*
ASSIGN TEXT.LINE = ’THIS IS THE FIRST LINE OF TEXT’
STORE TEXT IDENTIFIER = ’MYTEXT’ /* Create incore text file
*
RESET INCORE-CTL INCORE-DATA /* Enter data in file
SET CONTROL ’WB’ /* using an ISPF Editor
SET CONTROL ’L’
SET KEY ALL
ASSIGN ACTION = ’EDIT’
ASSIGN FILE-IDENTIFIER = ’MYTEXT’
CALLNAT INCORE USING INCORE-CTL INCORE-DATA /* Invoke the Editor as shown below
*
READ TEXT IDENTIFIER = ’MYTEXT’ /* Read file for further processing
.....
END-READ
END

Running this program results in the following display:

EDIT:-MYTEXT---
 COMMAND==>
 **** ******************************* top of data ******************************
 0001 THIS IS THE FIRST LINE OF TEXT
 **** ***************************** bottom of data *****************************

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 :I :CC QUIT :D RFIND RCHAN UP DOWN :DD RIGHT LEFT CURSO

All Editor functions are now available: there is no need to code them into your program. The program does not
regain control until the Editor session is terminated with PF3.

Integration of User Applications into Open NSPF
Natural ISPF provides a unified environment that allows you to access various types of external objects (such as
Natural programs, PDS or VSE members, LMS elements, jobs) using the same user interface. Objects can be
accessed using Natural ISPF menus (examples are entry screens for object types or the administration screen) and/or
commands (for example: EDIT PDS).

3Copyright Software AG 2002

Integration of User Applications into Open NSPFUser Applications

The Open NSPF facility allows you to customize the Natural ISPF environment by:

integrating your own site-specific objects
defining new commands or command synonyms relevant to your site
modifying existing menus or defining new ones

Taking advantage of this facility yields a number of benefits:

The Natural ISPF user interface can be expanded to encompass your site-specific objects, giving you a truly
single system image of all your resources;
All advantages of Natural ISPF features are available for your integrated objects and applications: split-screen,
multi-session operations and cross-session operations are among the most obvious.

Implementing New Objects and Commands

New site-specific objects and new commands are defined to Natural ISPF by adding an object code or a command
code to the so-called "Site Control Table". In the same table, new objects can additionally be related to functions
(typically, existing Natural ISPF functions).

Implementing the corresponding logic in Natural ISPF is done by writing a subprogram and copying it to the Natural
ISPF execution library (SYSLIB). Each new object and command has a unique program, which is called by Natural
ISPF whenever the object is accessed or the command is issued.

Example New Object:

You could integrate management of your personnel file in Natural ISPF by integrating the new object EMPLOYEE.
You can relate this new Natural ISPF object to functions such as LIST, DELETE, or EDIT. If a function is then
invoked for object EMPLOYEE, the subprogram linked to the object is executed, handling all object-specific logic.

Example New Command:

You could define the new command "MAIL" in the Site Control Table. Each time this command is issued, the
corresponding logic is executed, which could consist of a search of your office system and a returned message
indicating your mail status (for example, whether you have received new items).

Menu Customization

Menu customization means you can create new menus or modify existing ones. You can also change the default
menu, causing a menu of your choice to be displayed when you log on to Natural ISPF.

Within the context of the Open NSPF facility, the ability to customize menus is significant because it allows you to
make the integration of and access to new objects and applications at your site much more comfortable and
user-friendly. As a prime example, the interfaces to Con-nect and Predict were implemented using the Open NSPF
facility.

For another example, having defined EMPLOYEE as an object to Natural ISPF and linked it to certain functions (for
example, LIST, DELETE, EDIT, ...), you could modify the Natural ISPF main menu, making the maintenance of
employees a selectable option. The corresponding EMPLOYEE menu could contain parameter fields such as
NAME, FIRST NAME, SEX, CITY to make a search request to the personnel file as comfortable and flexible as
possible:

Copyright Software AG 20024

User ApplicationsImplementing New Objects and Commands

 ---------------------------- EMPLOYEES - ENTRY PANEL -------------------------
 COMMAND ===> LIST

 Name ===> BA* (Or name pattern for LIST)
 First name ===> * (Or name pattern for LIST)
 Sex ===> M (F, M)
 City ===>
 Records ===> (Nr. of records to be shown)

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Split End Suspe Rfind Rchan Up Down Swap Left Right :s

Entering data in the fields with the LIST command as shown above will list male employees whose last names start
with BA. The list could be displayed in Software AG Editor format, provided a suitable incore file is created by the
application. All Editor and Natural ISPF features for lists are available.

The power of Open NSPF is limited only by the resources available at your site and the imagination of the
programmers.

Macro Facility
Natural ISPF provides a macro feature that allows you to use the Natural language to generate text of any kind. In a
process known as macro expansion, text is generated, which can be done by substituting variables, repeating blocks,
generating blocks conditionally, even performing screen or file I/Os.

The macro feature is useful when you are creating different sources, all of the same structure but with different
content. The macro feature thus supports you in editing programs and other sources, offering a number of benefits
when developing applications with Natural ISPF. Among them are:

Rapid editing: the automatic generation of text lines in any source and any format relieves you of much routine
editing work;
Error elimination: the automatic generation of text lines eliminates a main source of error (typing and syntax
errors);
Reduced disk space requirements, for example for job control: jobs generated using macro expansion need not
be held in personal libraries.

Using Macros

Used in Natural programs, the macro feature is an extention of the Natural language, consisting of:

special processing statements executed when the program is compiled
variables in source lines substituted by valid values at compilation time

5Copyright Software AG 2002

Macro FacilityUser Applications

These special processing lines and variables are distinguished in the source by preceding them with the macro
character.

As a simple example of macro processing lines and variables, if you define the following macro:

0010 § MOVE ’PERSONNEL’ TO #FILE-NAME (A32)
0020 § MOVE ’NAME’ TO #KEY (A32)
0030 READ §#FILE-NAME BY §#KEY

the following source line is generated at compilation time:

READ PERSONNEL BY NAME

By varying the values, a variety of source lines can be created. This makes it possible to access each Natural view at
your site from the same "skeleton" program.

However, the macro feature is not restricted to Natural programs and can be used in Natural ISPF in a number of
ways:

MACRO Objects:

MACRO objects are a special type of Natural object and can be accessed and maintained as any other Natural object.
They contain macro processing lines and macro variables and can be used to generate any kind of text (for example,
documents, Natural sources, 3GL sources, job control). When a MACRO is executed, it is expanded and the output
is written to the user workpool, where it can be further maintained and turned into another source. MACROs can also
be referenced from other Natural ISPF objects to generate text lines.

Inline Macros:

Other Natural ISPF objects (Natural programs, PDS members, VSE members, etc.) can use macro variables in their
source. They can also reference a MACRO object using the special INCLUDE-MACRO <name> statement. When
the object is compiled (for a Natural object) or submitted (for non-Natural objects), the variables are substituted, the
specified MACRO object is executed, and the generated lines are included in the source.

The generated output of objects that use the macro facility is written to the user workpool, where it can be checked
and further handled.

Edit Macros:

When starting an edit session with a Natural ISPF object (Natural program, PDS member, VSE member, etc.), you
can specify a MACRO object to be used as a model for the new edit session. The specified MACRO is executed and
the generated lines written to the new edit session. The lines generated in this way are protected, but you can reserve
some places in the MACRO object at which you can add specific code in the members generated with the edit
macro.

A special REGENERATE command is available here, which regenerates the macro model, but retains the specific
code you have added.

Example MACRO

The following is an example MACRO object. Macro processing lines are identified by the macro character in the
first column (in our example, the paragraph sign, §, is used). This example generates JCL lines for an IEBCOPY job,
allowing flexible selection of members to be copied:

Copyright Software AG 20026

User ApplicationsUsing Macros

000010 § DEFINE DATA LOCAL
000020 § 1 #JOB (A08)
000030 § 1 #USER (A08)
000040 § 1 #IN-DSNAME (A44)
000050 § 1 #IN-VOLSER (A6)
000060 § 1 #MEMBER (A8)
000070 § 1 #OUT-DSNAME (A44)
000080 § 1 #OUT-VOLSER (A6)
000090 § 1 #DD-VOL (A20)
000100 § *
000110 § 1 PDS-DIRECTORY-VIEW VIEW OF PDS-DIRECTORY
000120 § 2 NODE
000130 § 2 DSNAME
000140 § 2 VOLSER
000150 § 2 MEMBER
000160 § END-DEFINE
000170 § INPUT ’COPY MEMBERS ==>’ #MEMBER
000180 § / ’FROM DSNAME ==>’ #IN-DSNAME ’VOLSER==>’ #IN-VOLSER
000190 § / ’TO DSNAME ==>’ #OUT-DSNAME ’VOLSER==>’ #OUT-VOLSER
000200 § COMPRESS *USER ’IEB’ INTO #JOB LEAVING NO SPACE
000210 § MOVE *USER TO #USER
000220 //§#JOB JOB §#USER,CLASS=G,MSGCLASS=X
000230 //COPY EXEC PGM=IEBCOPY
000240 //SYSPRINT DD SYSOUT=*
000250 § IF #IN-VOLSER NE ’ ’
000260 § COMPRESS ’,VOL=SER=’ #IN-VOLSER INTO #DD-VOL LEAVING NO SPACE
000270 § ELSE
000280 § RESET #DD-VOL
000290 § END-IF
000300 //I DD DISP=SHR,DSN=§#IN-DSNAME§#DD-VOL
000310 § IF #OUT-VOLSER NE ’ ’
000320 § COMPRESS ’,VOL=SER=’ #OUT-VOLSER INTO #DD-VOL LEAVING NO SPACE
000330 § ELSE
000340 § RESET #DD-VOL
000350 § END-IF
000360 //O DD DISP=SHR,DSN=§#OUT-DSNAME§#DD-VOL
000370 //SYSIN DD *
000380 C I=I,O=O
000390 § IF NOT (#MEMBER = ’*’ OR = ’ ’)
000400 § FIND PDS-DIRECTORY-VIEW
000410 § WITH DSNAME = #IN-DSNAME
000420 § AND VOLSER = #IN-VOLSER
000430 § AND MEMBER = #MEMBER
000440 S M=§MEMBER
000450 § END-FIND
000460 § END-IF

When this MACRO is RUN, macro expansion takes place and you are prompted for the source members and target
destination:

COPY MEMBERS ==>
FROM DSNAME ==> VOLSER==>
TO DSNAME ==> VOLSER==>

You can make use of generic search criteria (wildcard selection) to select members according to name pattern. The
example below selects all members in the source data set that have the dollar sign ($) as third character:

7Copyright Software AG 2002

Using MacrosUser Applications

COPY MEMBERS ==> __$*
FROM DSNAME ==> nispf.qa.cases VOLSER==>
TO DSNAME ==> mbe.comn.source VOLSER==>

When the source members and target data set have been specified, the following JCL is generated and written to the
user workpool, where it can be further edited if required and submitted:

000001 //MBEIEB JOB MBE,CLASS=G,MSGCLASS=X
000002 //COPY EXEC PGM=IEBCOPY
000003 //SYSPRINT DD SYSOUT=*
000004 //I DD DISP=SHR,DSN=NISPF.QA.CASES
000005 //O DD DISP=SHR,DSN=MBE.COMN.SOURCE
000006 //SYSIN DD *
000007 C I=I,O=O
000008 S M=BF$LS
000009 S M=DA$LS
000010 S M=DJ$LS
000011 S M=DS$AL
000012 S M=DS$IN
000013 S M=DS$LS
000014 S M=MV$LS
000015 S M=NV$LS
000016 S M=PV$LS

The IEBCOPY job with a valid member list is thus generated automatically, no further manual intervention is
required.

Copyright Software AG 20028

User ApplicationsUsing Macros

	User Applications
	Overview
	Incore Database
	Defining and Maintaining Incore Files
	
	Example

	Integration of User Applications into Open NSPF
	Implementing New Objects and Commands
	
	Example New Object:
	Example New Command:

	Menu Customization

	Macro Facility
	Using Macros
	
	MACRO Objects:
	Inline Macros:
	Edit Macros:
	Example MACRO

